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Introduction 

• Motivation 
o Devices with extreme impedances 

• Carbon nanotubes, nanowires, atto-farad varactors, very-weakly coupled 
resonators 

o Known method for microwave measurement of these structures 
• High sensitivity and accuracy 

 

• Main objective of the project 
o To develop traceable calibration/verification standards for extreme 

impedance measurement 

 

• Main objective of the presentation 
o To present first simulated result 
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Simple measurement method 
(Suppression of VNA uncertainties)  

Error model 
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Methodology 

• Frequency and impedance range 

• Up to 18 GHz  

– connector APC-7 (technology, connection repeatability) 

• Extremely high impedances 

– 5 ÷ 100 kΩ (developed measurement method) 

 

• Values of calibration/verification standards 

• 5 kΩ ÷ OPEN 

 

• Required precision in CST 

• At least ΔS = 1·10-4 
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Z0 (Ω) ZL (kΩ) ΓL (-) 

50 5 0.980198 

50 10 0.990050 

50 25 0.996008 

50 50 0.998002 
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CST Microwave Studio 

• Frequency solver 

• Adaptive tetrahedral mesh refinement 

• Criterion ΔS = 1·10-4 – reasonable trade-off 

• Lossless structures 

• Better understanding 

• Resistive strips 

• CrNi (supposed 10 kΩ/□) 

• Glass substrate 

• Fused silica (εr = 3.8) 
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PEC 

  

Glass disk: 

thickness = 1 mm 

εr = 3.8 

  

Resistive strip: 

R = 100 kΩ 

  

Waveguide 

below the 

cutoff 



Resistor on glass disk 

 

 

 

 

 

 

 

• High fringing capacity 

 

• Parallel combination R-C 
• Short circuit at high frequencies 
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Glass coaxial line 

 

 

 

 

 

 

 

 

 

• Low fringing capacity 
• Greater differences between calibration standards 
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Glass coaxial line 

Waveguide 
below cutoff 

glass dielectric 
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S-parameter S11 at 
the reference plane 



Resistor at the end of glass coaxial line 

 

 

 

 

 

 

 

 

 

• Strong frequency dependence of reflection coefficient 
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Glass coaxial line 
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Dependence on length of glass coaxial line 

 

 

 

 

 

 

• Ripples   

• Multiple reflections at both ends of glass line - elimination 
by the method 

• Low frequency degradation 

• Too short glass line - capacity coupling 
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Low frequency degradation - 0.2 mm long glass 
coaxial line 
 

 

 

 

 

 

 

 

• Resistor is only partially effective even on low frequencies  

• Bypassed on  frequencies above 3GHz 
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E distribution – 5 mm long glass coaxial line 

 

 

 

 

 

 

 
 

• E distribution around the resistor nearly independent 

 

 

 

 

 

12 

0.1GHz 3 GHz 

50W air 
coaxial line 

50W glass 
coaxial line 

50W air 
coaxial line 

50W glass 
coaxial line 

Resistive 
strip 

Resistive 
strip 



Possible configurations 
 

 

 

 

 

 

 

 

• Higher order modes limit frequency band 

• Still small frequency dependence of resistive strips at low 
frequencies - unclear 
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Conclusion 

• More possible configurations of calibration standards were 
studied 

• Calibration standards for extreme impedance measurements 
based on the coaxial connector APC-7 are achievable 

• Resistive strip(s) placed at the end of glass coaxial line are 
reasonable solution 

• Future tasks 

• Technology dimension optimization 

• Uncertainties determination (mounting repeatability, HFSS 
simulations) 

• Fabrication of calibration/verification standards 

• Experimental verification 
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