Study of Calibration Standards for Extreme Impedances Measurement

Czech Technical University in Prague Department of electromagnetic field www.elmag.org

Ing. Martin Haase, prof. Ing. Karel Hoffmann, CSc. haasema1@fel.cvut.cz, hoffmann@fel.cvut.cz

Outline

- Introduction

 Motivation and main aim
- Measurement theory
- Methodology

 Choice of calibration standards
 CST setting
- Simulated structures

 Basic problems
- Conclusion

Introduction

- Motivation
 - Devices with extreme impedances
 - Carbon nanotubes, nanowires, atto-farad varactors, very-weakly coupled resonators
 - Known method for microwave measurement of these structures
 - High sensitivity and accuracy
- Main objective of the project
 - To develop traceable calibration/verification standards for extreme impedance measurement
- Main objective of the presentation
 - To present first simulated result

Measurement theory

Methodology

- Frequency and impedance range
 - Up to 18 GHz

- connector APC-7 (technology, connection repeatability)
- Extremely high impedances
 - $-5 \div 100 \text{ k}\Omega$ (developed measurement method)
- Values of calibration/verification standards
 - 5 kΩ ÷ OPEN
- Required precision in CST
 - At least $\Delta S = 1 \cdot 10^{-4}$

Ζ ₀ (Ω)	Z _L (kΩ)	Г _L (-)
50	5	0.980198
50	10	0.990050
50	25	0.996008
50	50	0.998002
50	100	0.999000
50	OPEN	0.9999

CST Microwave Studio

- Frequency solver
- Adaptive tetrahedral mesh refinement
 - Criterion $\Delta S = 1 \cdot 10^{-4}$ reasonable trade-off
- Lossless structures
 - Better understanding
- Resistive strips
 - CrNi (supposed 10 k Ω/\Box)
- Glass substrate
 - Fused silica ($\varepsilon_r = 3.8$)

Resistor on glass disk

Glass coaxial line

Resistor at the end of glass coaxial line

• Strong frequency dependence of reflection coefficient

်၀၀

9

Why?

Dependence on length of glass coaxial line

- Ripples 🤇
 - Multiple reflections at both ends of glass line elimination by the method
- Low frequency degradation

Too short glass line - capacity coupling

- Resistor is only partially effective even on low frequencies
- Bypassed on frequencies above 3GHz

11

E distribution – 5 mm long glass coaxial line

• E distribution around the resistor nearly independent

Possible configurations

- Higher order modes limit frequency band
- Still small frequency dependence of resistive strips at low frequencies - unclear

Conclusion

- More possible configurations of calibration standards were studied
- Calibration standards for extreme impedance measurements based on the coaxial connector APC-7 are achievable
- Resistive strip(s) placed at the end of glass coaxial line are reasonable solution
- Future tasks
 - Technology dimension optimization
 - Uncertainties determination (mounting repeatability, HFSS simulations)
 - Fabrication of calibration/verification standards
 - Experimental verification

Thank you for your attention

