Technische Universität Darmstadt

Institut für Mikrowellentechnik und Photonik

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Photonics and Optical Communication Mohammadreza Malekizandi

Department of Photonics

Director of Institute: Prof. Dr.-Ing. Franko Küppers **Guest Professor**: Prof. Dr. Ivan B. Djordjevic **Emeritus Professor**: Prof. Dr.-Ing. Peter Meißner

Groups :

* Tunable VCSEL

- High speed MEMS VCSELs
- Tunable Filters
- Tunable THz generation

*** Optical Communication**

- Orthogonal Frequency Division Multiplexing (OFDM)
- Passive Optical Networks (PON)
- Optical Encryption
- Radio over Fiber

Department of Photonics

Student exchange with:

University of Arizona Colombia University Universidad Carlos III de Madrid

- One student from University of Arizona
- Two students from Colombia University
- One student from Universidad Carlos III de Madrid
- Three students from TUDarmstadt

MEMS Tunable VCSEL

4.0

3.5

3.0 2.5

2.0

1.5

1.0

0.5

0.0

35

38.6 mA 40.6 mA

Mh.IMP

20

25

33.8 mA 36.3 mA

30

05.07.2014 | Institute for Microwave Engineering and Photonics | TU Darmstadt

MEMS Tunable VCSEL Aplications

Mn_IMP

Gas Spectroscopy in the range of 1550 nm and 2000 nm

05.07.2014 | Institute for Microwave Engineering and Photonics | TU Darmstadt

Jh IMP

Fiber Bragg Gratings and Their Applications in All-Optical Encryption, OCDMA, and Optical Steganography

BER performance of proposed OCDMA system for different number of users. The laser pulse width is set to 1 ps and data rate to 10 Gb/s

Encoder scheme of Fiber Bragg gratings based Encoder

TECHNISCHE UNIVERSITÄT DARMSTADT

IMP

33.4 dB access budget can serve up to 256 customers

Mh.IMP

Optically UWB pulse generation for RoF

First order Gaussian derivative pulse and spectrum

Received pulse and spectrum after wireless transmission

$$F = \max_{\tau} \left| \frac{\int_{-\infty}^{+\infty} f(t) s_R(t+\tau) \mathrm{d}t}{\sqrt{\int_{-\infty}^{+\infty} f^2(t) \mathrm{d}t \int_{-\infty}^{+\infty} s_R^2(t)} \mathrm{d}t} \right|$$

	After APD	Monocycle	Doublet	3rd order
After APD	1	0.9643	0.7676	0.8717
After antenna	0.6655	0.6602	0.7098	0.7524

Fidelity for measured and theoretical pulses

Thank you for your attention

05.07.2014 | Institute for Microwave Engineering and Photonics | TU Darmstadt