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Outline
• Motivation: New Photonic Devices and Architectures for mm-wave and sub-

THz generation, detection and processing .

• Photonic Techniques for mm-Wave and THz Signal Synthesis (Generation).

• Fundamentals of Optical Heterodyning for Photonic signal Synthesis.

• Revision of different techniques for photonic signal synthesis.  

• Single Source.
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• Single Source.

• Dual(Multi)-Source.

• Optical Frequency Combs Generators for Photonic Synthesis.

• Photonics Techniques for mm-wave and THz signal processing.

• Photonic Techniques for mm-wave and THz Signal Detection.

• Conclusions.

Lyngby, July 2014



MotivationMotivation
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• Huge development of electronics and photonics in the last century…but

not the “gap” between them: the THz region

• Technological limitations to build the technology (oscillators and

detectors), especially coherent

Development of the EM Spectrum
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Complete Access to the mm-Wave and 

THz Range. Interest

• Contactless identification of hidden objects and materials 

(security)
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(security)

• Molecular resonances (spectroscopy)

• Non-ionizing radiation (medical/security applications)

• Atmospheric absorption (short range communications)
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Applications: Communications.
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Short range

High bandwidth

Toptica Photonics, toptica.com
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Applications: Spectroscopy.
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Jepsen, P. U., Møller, U. & Merbold, H. Investigation of aqueous alcohol and sugar solutions

with reflection terahertz time-domain spectroscopy. Optics Express 15,(22) 14717 (2007)
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Applications: Radioastronomy.
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Cámara mayorga, I, Schmitz, A., Klein, tT, Leinz, C. & Gusten, R. First In-Field Application of a Full 

Photonic Local Oscillator to Terahertz Astronomy. IEEE Transactions on Terahertz Science and Technology

2,(4) 393–399 (2012).)
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Applications: Imaging.
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Jet Propulsion Laboratory. California Institute of Technology, jpl.nasa.gov
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Applications: Law Enforcement.
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Michael C Kemp, Millimetre Wave and Terahertz Technology for the Detection of

Concealed Threats – A Review. Proc. of SPIE Vol. 6402, 64020D, (2006)
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Applications: Medical Imaging.

Real time breast cancer surgery

Histology and THz image overlay
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Teraview, teraview.com
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Applications: Inspection/Test.

Kevlar inspection
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Synview, synview.com
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• In the last 10/20 years we have witnessed a great development in the mm-

wave (Sub-THz, f<100 GHz) and THz (1THz<f<10 THz) ranges.

Complete Access to the mm-Wave and 

THz Range. Necessities

• What do we still need to really conquer these frequency ranges?
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• If we look to the evolution of the neighbor frequencies (i.e. RF and Optical

ranges) in the last 40 years we see that the huge development in those

fields have been associated to:

1. The development of low cost, compact and easy-to-operate-

components and transceivers.

2. Integration on a single chip/package with increasing functionalities.

1. The development of low cost, compact and easy-to-operate-

components and transceivers.
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• RADIOFREQUENCY (up to several tens of GHz):

Integrated Circuits and Components 

in the RF and Optical Ranges
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Major Driving: TELCOMUNICATIONS
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• Optical Range (400 nm- 2 µm):

Integrated Circuits and Components 

in the RF and Optical Ranges
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Major Driving: TELCOMUNICATIONS
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• Electronic Approach:

– Evolve the actual components in RF and low part of the mm-Wave spectrum to upper

frequencies.

What about the mm-wave and THz ranges?

Some Possible Strategies

• Pure “Optical” Approach:
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• Pure “Optical” Approach:

– Use of Quantum Cascade Lasers (QCL)-based integrated transceivers (IEEE Spectrum

September 2011).

• Photonic Synthesis Approach:

– Use of Photonic Integrated Circuits and telecommunications technology-based

components to generate, detect and process mm-Wave and THz signals through

photomixing of two optical wavelengths.
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Why Photonic Techniques for mm-Wave 

and THz generation and Detection?

1.- Microwave photonics techniques.

• These are very well established techniques for microwave and RF signal

transmission and processing. They are mainly based on telecom COTS

components so they are becoming cost-effective solutions in many fields.

• In the last years we have witnessed an increasing interest on extrapolating

these photonic generation schemes in the mm-wave and sub-THz

frequency ranges. The advantages for these systems are the high quality of

the signal generated and potential for compactness.
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Microwave Photonics
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• We can take advantage of the huge development of optical transceivers

Why Photonic Techniques for mm-

Wave and THZ generation?

2.- Take Advantage Telecommunication technology-
based Components and Photonic Integrated Circuits.

• We can take advantage of the huge development of optical transceivers
and components in the 1550 nm wavelenghts associated to the
deployment of optical communications in the last 30 years.

• PICs (Photonic Integrated Circuits) are becoming a reality in this Optical
Telecommunications Field. One example is the current works towards
integrated OPLL for coherent detection (Coldren-UCSB) that can be
directly used for photonic mm-Wave synthesis
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Telecommunication technology-based 

Components
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Telecommunication technology-based 

Components but…..
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Photonic Integrated Circuits 
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Photonic Integration Examples 

Active-Passive 

Integration
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Waveguides 

and Mode 

Couplers

Arrayed Waveguide 

Gratings (Filtering)
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Example of complete system: OPLL 
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S. Ristic, A. Bhardwaj, M. J. Rodwell, L.A. Coldren and L.A. Johansson ‘An Optical Phase-Locked Loop
Photonic Integrated Circuit’ Journal of Lightwave Tech., Vol. 28, Nº 4, pp. 526-537, February 2011

300 MHz loop bandwidth 

thanks to integration
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Why Photonic Techniques for mm-

Wave and THZ generation?

3.- Take Advantage of the increasing performance of
photoconductor-based and new components for THz
generation and detection.

• We can take advantage of the latest developments on Uni-Travelling

Carrier Photodiodes (UTC-PD), photoconductors (even a 1550 nm

wavelength) and superlattice photomixers for signal generation and

detection.

• Possibility of integration of such devices.
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generation and detection.
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New Components with Increasing 

Performances
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mm-Wave and THz mm-Wave and THz 

Photonic Synthesis
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• When revising Photonic Generation of mm-wave and

THz signal we are going to focus only on

semiconductor laser sources and standard telecom

components.

“Disclaimer”

components.

• For this reason, mm-wave and sub-THz photonic

generation schemes using solid state (Dual

Frequency Yb:KGW, Ti:Shappire) and Fiber lasers are

deliberately omitted.
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• Power vs Frequency

“Figures of Merit” for the Generated 

mm-wave and THz signals

• Tunability
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• Quality: Phase Noise

Heterodyne Systems!!

• Tunability
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• Mm-Wave and Sub-THz photonic Signal
Synthesis is based on heterodyning two (or
more) optical modes, optical frequencies ω1

and ω so that |ω - ω | << ω , ω (within the

Photonic Signal Synthesis

and ω2, so that |ω1 - ω2| << ω1, ω2 (within the
photodetector bandwidth) so that:
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• Being E the total Optical Field at the detector

input
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Optical Heterodyning. Fundamentals

Optical Domain:
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Electrical Domain:
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Optical Heterodyning (Free Running)

RF component at the 

frequency difference 

Phase relationship 

between the two 

optical modes
∆fRF ≅∆f1+ ∆f2

Electrical Domain
Optical Domain
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∆f1

∆fRF ≅∆f1+ ∆f2

∆f2
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Optical Heterodyning

• If semiconductor lasers are used (efficiency and compactness)

the associated linewidths can be as high as 10/50 MHz for

tunable Sampled-grating DBR lasers (SG-DBR) → Very bad

spectral quality of the RF generated signal

• Current and temperature influences are high (10 GHz/K and
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• Current and temperature influences are high (10 GHz/K and

1GHz/mA typical)→ necessity of further stabilization of the laser

sources

We need to “lock” the 

two optical modes!!

And event better 
if locked to an 
external high-
purity RF 
reference
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Strategies for Photonic RF Synthesis
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A.R: Criado: New Photonic Architectures and 

Devices for  Generation and Detection of 

Sub-THz and THz wawes. PhD dissertation 

.Madrid 2013
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Dual-Source Architectures

• They use two lasers (at least) so the phase noise for the 

two opHcal modes are not correlated anymore → Need of 

more complicated architectures.
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more complicated architectures.

• Tunability is possible and associated to the control loops.

• Complex systems in general

Lyngby, July 2014



Optical Phase Locked Loops (OPLL)
They use a feedback loop to correlate the phase noise from both lasers.

The loop delay has to be keep very small (ns) in order to compensate the

high frequency fluctuations and not only the low frequency ones
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Possible RF Reference 

included
Loop Bandwidth
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Dual-Source Architectures. Conclusions

• Tunable Photonic mm-wave and sub-THz generation 

possible.
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• However:

• Complex architectures

• The maximum frequency difference that can be 

achieved is somehow limited.

Lyngby, July 2014



Single Source

Dual-Mode Structures
• Two optical frequencies share the same laser cavity (noise 

correlation)

• The two-mode frequency separation is fixed by cavity 

parameters (physical dimensions).

• Possibility to lock to an external reference.
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• Possibility to lock to an external reference.
IIb1b1 IIb2b2

• Monolithic, integrated and compact devices

K.E. Razavi and P.A. Davies, ‘Semiconductor laser sources for the generation of millimetre-wave signals’ 
IEE Proceedings-Optoelectronics, Vol. 145, Nº 3, pp. 159-163. (1998)
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DMLL – Example of Device Structure 

• Devices developed within the 

European Project MONOPLA.

• Structures with four sections: gain, 

phase, diffraction grating and saturable
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phase, diffraction grating and saturable

absorber

•Typical dimensions:

• gain= 300 µm

• phase= 370 µm

• grating = 200 µm

• absorber = 150 µm

Lyngby, July 2014



DMLL- Dual Mode Operation

• The longitudinal mode spectrum shows a 

two-mode behavior.

•Mode separation around 40 GHz

-50
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• A resonance peak associated to the 

longitudinal mode separation frequency 

appears in the frequency response of 

the device
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Dual-Mode Structures. Conclusions

• Monolithic, compact devices for mm-wave photonic 

synthesis using a RF subharmonic reference.

• Signal processing capabilities can be incorporated (ie

 Pablo Acedo - UC3M 41

• Signal processing capabilities can be incorporated (ie

mixing) leading to compact and integrated systems.

• However:

• Synthesized frequency fixed by physical dimensions of 

the caviHes→ No tunable.

Lyngby, July 2014



Optical Frequency Combs Generators

• As mentioned before, the photonic synthesis of mm-wave

and sub-THz signals using single source schemes provide no

tunability at all, while several sources architectures have

their limitations associated to frequency precision and

 Pablo Acedo - UC3M 42

their limitations associated to frequency precision and

spectral purity.

• To give the desired synthesizer performance, it will be

convenient to have an optical frequency reference with high

stability and known frequency difference.
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Optical Frequency Combs Generators

• Optical Frequency Combs

Generators (OFCG) provide such

reference as are optical comb lines

with frequency separation set with

high precision by a microwave

 Pablo Acedo - UC3M 43

high precision by a microwave

synthesizer.

Lyngby, July 2014



Mode Selection: Optical Filtering
Use of Fabry-Perot Tunable Filters.
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BW3d
B

Pass-Bands
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Mode Selection: Injection Locking
Two slave lasers are locked to a Master laser side-bands that is

amplitude, phase modulated or coming from a comb.
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• Locking process:  frequency detuning and 

injected power (IRm)

• Locking bandwidth

Lyngby, July 2014



Mode Selection: Comparison
• SMSR (12 dB vs. 30 dB)

• Stability (seconds/minutes vs. hours)
FPFT stability issues: 

• Sensitivity of the PZT (voltage vs. wavelength, 

around 10 mV/10GHz)

• Drift of the filters (very long warm-up)

• Need of very accurate driving electronics and/or 
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• Need of very accurate driving electronics and/or 

feedback loops 

Lyngby, July 2014



Monolithic OFCGs: Mode-locked lasers
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Monolithic Mode-locked lasers 

provide compact OFCG sources for 

photonic synthesis
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OFCGs using Mode-locked lasers
• Passive Mode Locking

• Low phase noise

• Jitter:  147 fs [4MHz – 80MHz]

• RF linewidth: < 500 Hz (narrowest to date)

• Hybrid mode locking.

• Jitter: 74 fs [4MHz – 80MHz] – (RF source, 71 fs)

• RF linewidth: < 10 Hz   – Limited by analyzer  
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• RF linewidth: < 10 Hz   – Limited by analyzer  
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Photonic Synthesis using Monolithic OFCG 

and Telecom Components
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Desired modes from the OFCG are selected using high-finesse voltage-controlled 

stabilized fiber filters. Further complete tunability can be achieved using external 

modulators

Lyngby, July 2014



Photonic Synthesis using Monolithic OFCG 

and Telecom Components

Reduction of the phase noise compared to 

all-mode beating
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A.R. Criado; P. Acedo; G. Carpintero, C. de Dios; K. Yvind ‘Observation of phase noise reduction in
photonically synthesized sub-THz signals using a Passively Mode-Locked Laser Diode and highly selective
optical filtering’ Optics Express, Vol. 20, Nº2, pp. 1253-1260 (January 2012)

Frequencies can be synthesized on multiples of the 

fundamental mode separation
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Photonic Synthesis using Monolithic OFCG 

and Telecom Components

Low Phase-noise of the generated mm-wave signal

-90

-80

-70

-60

-50

-40

L
(d

B
c/

H
z)

-1M -500k 0 500k 1M

-80

-60

-40

-20

R
F

 p
ow

er
 (

dB
m

)

0.8

1
.5

 Pablo Acedo - UC3M 51

10k 100k 1M 10M
-110

-100

Frequency Offset (Hz)

-1M -500k 0 1M500k
0

0.2

0.4

0.6

0.8

Harmonic normalized frequency offset (Hz)
N

or
m

al
iz

ed
 p

ow
er

 (
a.

u.
)

100k 1M
0

.25

No multiplication noise (20 Log(N)) 

compared to electronic mulHplicaHon → the 

synthesized signal inherits the  phase noise 

of the fundamental frequency (the 

microwave reference in hybrid mode-locking

P. Acedo, G. Carpintero, A.R. Criado, C. de Dios and K. Yvind ‘Photonic Synthesis of Continuous-Wave
Millimeter-Wave Signals Using a Passively Mode-Locked Laser Diode and Selective Optical Filtering’
Microwave and Optical Technology Letters Vol. 54, No. 6, pp 1416-1419 (June 2012)
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Monolithic Optical Frequency Combs. 

Conclusions

• High Quality signal generation.

• Integration capabilities (use of monolithic Mode-Locked Lasers 

and telecom components)
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and telecom components)

• However:

• Discrete tunability (multiples of fundamental frequency)

Lyngby, July 2014



Tunable Optical Frequency Combs
Use of a reference RF oscillator to modulate 

a semiconductor laser under gain-switching 

conditions and a Phase modulator to enlarge 

the optical bandwidth  
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Further use of non-linear optical elements 

(Non-linear loops, non-linear optical fibers) 

would increase the bandwidth (number of 

modes) even more 

C. de Dios, A.R. Criado, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, L.E. García, P. Acedo and D. 
Segovia  “Sub-THz and THz Photonic Generation with Continuous Tunability Using Gain Switching based 
Optical Frequency Comb Generators and n-i-p-n-i-p Superlattice Photomixers” 2012 Microwave Photonics 
Conference (The Netherlands-Sept 2012)
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Frequency Synthesis using Tunable Optical 

Frequency Combs: Mode Selection
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Á. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard and P. 
Acedo “Ultra narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice
photomixers” Electronic Letters (Acepted for Publication, 2012)

Required optical power still a issue (specially if we 

target photomixers arrays). Use of injection locking 

techniques

Lyngby, July 2014



Ultra-Narrow Linewidth

Synthesized signal at 120 GHz. Measured 

(black trace) and Lorentzian fit (grey trace). 

Frequency Synthesis using Tunable Optical 
Frequency Combs

 Pablo Acedo - UC3M 55

Á. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard and P. 
Acedo “Ultra narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice
photomixers” Electronic Letters (Acepted for Publication, 2012)

(black trace) and Lorentzian fit (grey trace). 

Inset: reference signal measured with the 

same dynamic range (same axis).
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Continous Tunability

Frequency Synthesis using Tunable Optical 
Frequency Combs

Fine tunability, 120 Hz steps (fREF=10 GHz). 

Measured data (average values: black dots; standard 

deviation: black caps); and linear fit (grey trace).
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Coarse tunability (fREF=10 GHz). Measured data 

(average values: black dots; standard deviation: 

black caps); and linear fit (grey trace).

Lyngby, July 2014



Frequency Synthesis using Tunable Optical 
Frequency Combs
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Start-up Company

Spinoff UC3M
Microwave Photonics

Radio-over-Fiber Systems
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TerahertzRoF Transceivers

pure-T-wave

Sub-THz Photonic Generator

• FWHM <10 Hz @ 120 GHz

• Continous Tunability 0.01 Hz 

@ 120 GHz
www.luzwavelabs.com

Lyngby, July 2014



What about Photomixers?

• We stated at the beginning of the talk that this photonic 

synthesis would work if the mm-wave/Sub-THz lays within 

the available BW of the photodiode/photodetector used.

•In telecom wavelengths (1500 nm) the devices typically used 

for mm-wave generation are:

 Pablo Acedo - UC3M 59

for mm-wave generation are:

• TW-PD : BW ∼ 100 GHz

• UTC-PD : BW ∼ 500/600 GHz

• Nevertheless there is an increasing work on LT-InGaAs and 

superlattice photomixers at these wavelengths although so 

far it is been difficult to achieve performances approaching 

that of LT-AsGa in 850 nm

Lyngby, July 2014



State of the Art for UTC-PDs
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M.J. Fince, E. Rouvalis, L. Ponnampalam, C.C. Renaud and A.J. Seeds ‘Telecommunications technology-
based terahertz sources’ Electronics Letters, Special Supplement on Terahertz Technology , pp. S28-S31, 
December 2010

Lyngby, July 2014



State of the art for Photomixers

@ 1.55 micron
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J. Mangeney, F. Meng, D. Gacemi, E. Peytavit, J. F. Lampin, and T. Akalin ‘Terahertz generation and power 
limits in In0.53Ga0.47As photomixer coupled to transverse-electromagnetic-horn antenna driven at 1.55 um
wavelengths’ Applied Physics Letters, Vol. 97, Nº 16 (161109) 2010

Lyngby, July 2014



Superlattice (nip-nip)Photomixers
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S. Preu, G. H. Dohler, S. Malzer, L. J. Wang and A. C. Gossard ‘Tunable, continuous-wave Terahertz 
photomixer sources and applications’ Journal of Applied Physics,  Vol. 109, Nº6  (061301) 2011

Lyngby, July 2014



1 cm

x

DC-bias
(0 - 2 V)

Tunable, Continuous -Wave 
Photomixer–based sources

S. Bauerschmidt, S. Preu, S. Malzer, G. H. Döhler, L. J. Wang, H. Lu, and A. C. Gossard, “Continuous
wave Terahertz emitter arrays for spectroscopy and imaging applications”, Proc. SPIE Vol. 7671, 
76710D-1 (2010)

63

y

GND
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Photomixer arrays
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S. Al-Daffaie, P. Acedo, H. Hartnagel ‘Simulation of a CW THz Camera 
Scheme’ WOCSDICE 2012. Porquerolles (France) 2012
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Photomixers: Conclusions/Future trends

• In the last years great advantages have been reported on 

photomixers and photoconductors @ 1550 delivering more 

and more power up to the lower THz band (up to 2 THz).
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• Moreover, different strategies have been also proposed to 

increase the generated power and THz frequencies:

• Photoconductor arrays

• Large Area Emitters

Lyngby, July 2014



mm-Wave and THz 

Photonic Photonic 

Processing
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Phase Control in the Optical Domain

67 Pablo Acedo - UC3M

T. Göbel, D. Schoenherr, C. Sydlo, M. Feiginov, P. Meissner and H.L. Hartnagel, ‘Continuous-wave terahertz 
system with electro-optical terahertz phase control’ Electronics Letters Vol. 44 No. 14 (2008)

Lyngby, July 2014



THz Pulse Shaping

68 Pablo Acedo - UC3M

Jesús Palací, Alexander Bockelt and Borja Vidal, ‘Terahertz radiation shaping based on optical
spectrum modulation in the time domain’ Opt. Express, Vol. 20, No. 21, pp. 23117-23125, (2012)

Lyngby, July 2014



Processing: Conclusions/Future trends

• Processing of THz signal in the optical domain possible.

• Direct extrapolation of the microwave photonics techniques 

already developed for “low” frequencies (GHz).
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already developed for “low” frequencies (GHz).

• Full access to this technologies and component will allow 

the implementation of more and more complex systems with 

increasing functionalities.

Lyngby, July 2014



mm-Wave and THz mm-Wave and THz 

Photonic Detection
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• The use of photomixers for the detection of THz signals is
more than 20 years old now. Photomixers are illuminated
with two wavelenghts at the desired separation and a DC
voltage appears if a THz wave illuminates at the same
time the sample (Homodyne/intensity detection).

“Disclaimer”

time the sample (Homodyne/intensity detection).

• But we are interested on HETERODYNE detection (ie we
want to recover both the amplitude and PHASE of the
incoming THz or mm-wave). And this cannot be done
with the usual photomixer approach.
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Heterodyne detection: Optoelectronic 

Mixers
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T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, "Terahertz Frequency Metrology 
Based on Frequency Comb,"  IEEE J. Selected Topics in Quantum Electronics, vol. 17, pp. 191-201, (2011).
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• Optoelectronic mixers are typical schemes
among Microwave Photonics techniques and
are based on different configurations:

Heterodyne detection: Optoelectronic 

Mixers

are based on different configurations:

– Use of external modulators

– Dual-mode sources

– Semiconductor Optical Amplifiers (SOAs)
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• Nevertheless these schemes are far from being a “true”
photonic RF receiver as:
– They usually need a complete RF front-end before the

optoelectronic mixer is done.

Heterodyne detection: Optoelectronic 

Mixers

optoelectronic mixer is done.

– The component count is high.

– Associated sensitivity is typically low.

• New strategies are appearing.
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• Sensitivity/Noise

“Figures of Merit” for mm-wave and THz 

signals Detectors

• Bandwidth (Broad Band)
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• Dynamic Range

Heterodyne Systems!!

• Bandwidth (Broad Band)
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Heterodyne All-Optical pixel

for RF detection based on XN-SOAs

XN-SOADFB

fLO fRF

PD Δf=fIF

Fiber link Fiber link

Δf=fIF=|fLO - fRF|

Σf= fLO + fRF

76 Pablo Acedo - UC3M

fOC f

fLO

0

fRF

f

fRF

fOC
fΔf Σf

c)b)a)

-Δf-Σf

This pixel can be combined with standard Local Oscillator and Intermediate Frequency Radio-

over-Fiber distribution typical in Phased-array architectures.

No need to provide the receiving pixel with RF LNA, only DC bias to the XN-SOA 
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Heterodyne All-Optical pixel

for RF detection based on XN-SOAs

Downconversion ratio maps

Evolution with SOA Current
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Configuration With Remote Photonic Local Oscillator Distribution’ IEEE Photonics Technology Letters, 
vol.24, no.13, pp.1136-1138, (July 2012) 
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New Devices for Optoelectronic 

Heterodyne Detection: TW-UTC-PD
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E. Rouvalis, M.J. Fice, C.C. Renaud and A. Seeds “Optoelectronic detection of millimeter-wave signals with 
travelling-wave uni-travelling carrier photodiodes” Optics Express, Vol. 19, Nº 3, pp. 2079-2084, 2011
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New Devices for Optoelectronic 

Heterodyne Detection: Photomixers
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F.L. Constantin “Phase-coherent heterodyne detection in the Terahertz regime with a photomixer” IEEE 
Journal of Quantum Electronics, Vol. 47, Nº 11, pp. 1458-1462, 2011
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New Devices for Optoelectronic 

Heterodyne Detection: ¿?
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October 10th 2011
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New Devices for Optoelectronic 

Heterodyne Detection: npipn

Illumination Sample B
Bias Tee

Cernex CBTH7040

75 kHz to 40 GHz

Picoprobe 40A

GSG 125 u pitch
Cascade LWP 1229

Anritsu

MS2668C

DC

AC+DC
AC

mmW

multiplier
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ESA

pA meter/voltage source

Keithley 6487

VNA

Bias Tee

Picosecond 5535

7 kHz to 12.5 GHz

Anritsu

MG3695A

multiplier

AC+DC

DC

AC

Lyngby, July 2014



New Devices for Optoelectronic 

Heterodyne Detection: npipn
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Photonic Heterodyne Detection of mm-

wave and THz Signals. Conclusions

• In the last years (2011/2012) novel schemes and components 

have appear that demonstrate the possibility of all-optical 

heterodyne receivers for mm-wave and THz signals.
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heterodyne receivers for mm-wave and THz signals.

• Such components can be easily integrated in current Radio-

over-fiber Local oscillator distribution network typical to radars 

and electronic warfare systems for years now.

• Still a lot of work still ahead in the optimization of the 

described devices and schemes and other to come (superlattice

nip-pin photomixers) to achieve the required sensitivity and, 

specially, dynamic range!!!
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Conclusions (I)

• In order to really conquer the THz-gap we have to provide with

low-cost, easy-to-operate, integrated components and

transceivers that would act as “building blocks” for the systems

that are to exploit the potentialities of this frequency band

• Photonics techniques based on the Synthesis of mm-wave and
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• Photonics techniques based on the Synthesis of mm-wave and

THz signals are becoming a reality in real-world applications for

these frequency ranges associated firstly, to the high spectral

quality of the generated signals and the integrations capacities

(PICs); and secondly, to the great advantages associated to the

use of telecommunications technology-based components and

techniques.
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Conclusions (II)

• Several strategies can be used for photonic synthesis (dual-mode

structures, external modulators), but the use of OFCG along with

selective filtering (either passive of OPLL based) provides with

the best results in terms of spectral quality. Also continuous

tunability has also been demonstrated
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tunability has also been demonstrated

• Heterodyne detection using photonic techniques is also an active

field of research. New schemes and devices have demonstrated

all-optical receiving pixels in the mm-wave range (up to 100 GHz)

that can take advantage of the current photonic LO and IF

distribution architectures for radar and imaging radar

developments.
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