

Antennas for Wireless Body Area Networks

The 24th International Traveling Summer School on Microwaves and Lightwaves

Zbynek Raida

www.urel.feec.vutbr.cz

OUTLINE

- □ Introduction to antennas From Maxwell equations to applications
- Human body
 Ways of modeling
- □ Antennas

On-body versus off-body

□ Conclusions

Maxwell equations (1)

1864: The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws.

James Clerk Maxwell

Maxwell equations (2)

$$\oint_{I} \mathbf{H} \cdot d\mathbf{l} = I + \frac{d}{dt} \int_{S} (\varepsilon \mathbf{E}) \cdot d\mathbf{S}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{d}{dt} \left(\varepsilon \mathbf{E} \right)$$

$$\oint_{l} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} (\mu \mathbf{H}) \cdot d\mathbf{S}$$

$$\nabla \times \mathbf{E} = -\frac{d}{dt} (\mu \mathbf{H})$$

$$\oint_{S} (\varepsilon \mathbf{E}) \cdot d\mathbf{S} = Q$$

$$\nabla \cdot \big(\varepsilon \mathbf{E} \big) = \rho$$

$$\oint_{S} (\mu \mathbf{H}) \cdot d\mathbf{S} = 0$$

$$\nabla \cdot (\mu \mathbf{H}) = 0$$

Maxwell equations (3)

André-Marie Ampére

 $\oint_{l} \mathbf{H} \cdot d\mathbf{l} = I + \frac{d}{dt} \int_{S} (\varepsilon \mathbf{E}) \cdot d\mathbf{S}$

Maxwell equations (4)

André-Marie Ampére

 $\oint_{l} \mathbf{H} \cdot d\mathbf{l} = I + \frac{d}{dt} \int_{S} (\varepsilon \mathbf{E}) \cdot d\mathbf{S}$

Maxwell equations (5)

dl dø/dt

Michael Faraday

Maxwell equations (6)

Michael Faraday

 $\oint_{l} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} (\mu \mathbf{H}) \cdot d\mathbf{S}$

Wave equation

- Let's assume harmonic fields
- Then, Maxwell equations

 $\nabla \times \mathbf{E} = -j\omega\mu \mathbf{H}$ $\nabla \times \mathbf{H} = \mathbf{J} + j\omega\varepsilon \mathbf{E}$

• Reducing the number of unknowns \rightarrow potentials

$$\mathbf{B} = \nabla \times \mathbf{A} \qquad \nabla^2 \mathbf{A} + k^2 \mathbf{A} = -\mu \mathbf{J} \qquad k^2 = \omega^2 \varepsilon \,\mu$$
$$\mathbf{E} + j\omega\mu \mathbf{A} = -\nabla \varphi \qquad \nabla^2 \varphi + k^2 \varphi = 0$$
$$\varphi = (j\omega/k^2) \nabla \cdot \mathbf{A}$$

Potentials

• Currents flowing along antenna wire

$$\mathbf{A}(\mathbf{r}) = \mu_0 \iiint \mathbf{J}(\mathbf{r}') \frac{\exp[-j\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')]}{4\pi |\mathbf{r}-\mathbf{r}'|} d\mathbf{r}'$$

• Charges accumulating at the ends of antenna

$$\varphi(\mathbf{r}) = \frac{1}{\varepsilon_0} \iiint q(\mathbf{r}') \frac{\exp\left[-j\mathbf{k} \cdot (\mathbf{r} - \mathbf{r}')\right]}{4\pi |\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

• Continuity theorem

$$-j\omega q(\mathbf{r}) = \nabla \cdot \mathbf{J}$$

• Radiated wave

$$\mathbf{E}(\mathbf{r}) = -j\,\omega\,\mathbf{A}(\mathbf{r}) - \nabla\,\varphi$$

Elementary dipole (1)

• Magnetic vector potential

$$\mathbf{A}(\mathbf{r}) = \mu_0 \iiint \mathbf{J}(\mathbf{r}') \frac{\exp[-j\mathbf{k} \cdot (\mathbf{r} - \mathbf{r}')]}{4\pi |\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

$$dA_{z} = \frac{\mu_{0}}{4\pi} I \, dz \, \frac{e^{-jkr}}{r}$$

Elementary dipole (2)

• Substituting vector potential to Maxwell equations

$$dE_{r} = \frac{1}{4\pi\varepsilon} \frac{2I \, dz}{\omega} \, k^{3} \cos \vartheta \left[\frac{-j}{\left(kr\right)^{3}} + \frac{1}{\left(kr\right)^{2}} \right] e^{-jkr}$$

$$dE_{\mathcal{G}} = \frac{1}{4\pi\varepsilon} \frac{I \, dz}{\omega} \, k^3 \, \sin \mathcal{G} \left[\frac{-j}{\left(kr\right)^3} + \frac{1}{\left(kr\right)^2} + \frac{j}{\left(kr\right)} \right] e^{-jkr}$$

$$dH_{\varphi} = \frac{1}{4\pi} I \, dz \, k^2 \, \sin \vartheta \left[\frac{1}{\left(kr\right)^2} + \frac{j}{\left(kr\right)} \right] e^{-jkr}$$

Elementary dipole (3)

• Far field

$$dE_{g} = 60I \ j \frac{k}{2} \sin \theta \, dz \, \frac{e^{-jkr}}{r}$$
$$dE_{g}$$

$$dH_{\varphi} = \frac{s}{120\pi}$$

• Radiation pattern

$$E = 60I \ F(\varphi, \vartheta) \frac{e^{-jkr}}{r}$$
$$F(\varphi, \vartheta) = j \frac{k}{2} \sin \vartheta \ dz$$

Elementary dipole (4)

Elementary dipole (5)

REL DEPARTMENT OF RADIO ELECTRONICS

Frequency:

Phase:

Elementary dipole (6)

Elementary dipole (7)

Cutplane normal:	1, 0, 0
Cutplane position:	0
2D Maximum:	3.386e+04
Frequency:	2.4
Phase:	22.5

> y

Practical dipoles (1)

Practical dipoles (3)

Practical dipoles (4)

f = 7.30 GHz **E plane**

azimut

azimut

Towards tissue

- Surface and creeping waves: tangential electric field intensity attenuated
- Monopoles exciting vertical polarization versus slot antennas \rightarrow in parallel to skin
- Sensors → directional antennas
- Central unit → omnidirectional antenna
- Testing \rightarrow phantoms

Parameters of tissues

	ε _r [-]	ε _r [-]	σ [S/m]	σ [S/m]
Tissue	2.40 GHz	5.80 GHz	2.40 GHz	5.80 GHz
Skin	38.063	35.114	1.441	3.717
Fat	5.285	4.955	0.102	0.293
Muscle	52.791	48.485	1.705	4.962

Numerical phantoms (1)

Numerical phantoms (2)

Detailed anatomical models of the human body provided by the ITIS foundation A. Christ, W. Kainz, E. G. Hahn, K. Honegger,
M. Zefferer, E. Neufeld, W. Rascher, R. Janka,
W. Bautz, J. Chen, B. Kiefer, P. Schmitt,
H. P. Hollenbach, J. X. Shen, M. Oberle, N. Kuster,
The virtual family—Development of anatomical CAD models of two adults and two children for
dosimetric simulations, Phys. Med. Biol., vol. 55,
no. 2, pp. 23-38, Jan. 2010

Physical phantoms

- Block of the basis 200 mm × 200 mm and the height 20 mm
- Modified agar gelatin ($\varepsilon_r = 48$)
- Agar: 66%Water: 33%

Fractal slot dipole (1)

Notches: the same current length in reduced area

DEPARTMENT OF RADIO ELECTRONICS

Fractal slot dipole (2)

BW = 39.64%

H - PlaneG = 4.1 dBi@5.5GHz

Fractal slot dipole (3)

Iteration	Dimensions [mm]	Bandwidth [%]	VSWR in band
0	60 x 35	25.73	1.35
1	30 x 25	39.64	1.20
2	22 x 23	42.28	1.23

Fractal slot dipole (4)

Fractal slot antenna (5)

Fractal slot antenna (6)

Fractal slot antenna (7)

Koch loop antenna (1)

Koch loop antenna (2)

Koch loop antenna (3)

Slot loop antenna (1)

Parameters to be met:

- □ Frequency: 5.725 GHz to 5.875 GHz (ISM band)
- \Box Input impedance: 50 Ω
- □ Radiation: omnidirectional in antenna plane
- Polarization: linear
- □ Impedance bandwidth: 2.6%
- □ Tested: on muscle-equivalent phantom

Slot loop antenna (2)

Circular loop antenna: first operating mode

Slot loop antenna (3)

Circular loop antenna: second operating mode

Slot loop antenna (4)

Circular loop antenna with 5 shorting vias

Slot loop antenna (5)

Circular loop antenna with 5 shorting vias and 1 shorting strip

DEPARTMENT OF RADIO ELECTRONICS

Slot loop antenna (6)

Circular loop antenna with 5 shorting vias and 2 shorting strips

DEPARTMENT OF RADIO ELECTRONICS

Antenna configuration

Slot loop antenna (8)

Fabricated antenna

Reflection coefficient

Slot loop antenna (9)

Comparing radiation in horizontal plane

Slot loop antenna (10)

Comparing radiation in vertical plane

Summary

- Planar slot-line antennas suitable for wireless body area networks presented
- Slot dipoles: directional
- Slot loops: omnidirectional
- Testing
 - Good agreement of chest model and voxel phantom
 - Good agreement of simulation and measurement

Acknowledgements

xvasin05@stud.feec.vutbr.cz

The described development was done in SIX Research Centre

Supported by the operational program Research and Development for Innovation

The grant no. CZ.1.05/2.1.00/03.0072

Thank you for your attention

raida@feec.vutbr.cz

Dept. Radio Electronics Brno University of Technology Technicka 12, 616 00 Brno, Czech Republic

