Sensors for Particle Accelerators

Dr.-Ing. Andreas Penirschke

penirschke@imp.tu-darmstadt.de

Technische Universität Darmstadt Institute for Microwave Engineering and Photonics Merckstraße 25

64283 Darmstadt, Germany

M. IMP

П

Outline

History of Particle Accelerators

- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Particle Accelerators

- Modern accelerators can accelerate particles to speeds very close to that of light.
- At low energies, the velocity of the particle increases with the square root of the kinetic energy (Newton).
- At relativistic energies, the velocity increases very slowly asymptotically approaching that of light (Einstein).
- It seems as if the velocity of the particle 'saturates' to the velocity of light.
- The speed increases, but not as spectacularly as the mass. In fact, it would be more correct to speak of the momentum (m·v) increasing.

$$1eV = 1.6022 \cdot 10^{-19} J$$

Courtesy: P.J. Bryant - History and Applications of Accelerators CERN Accelerator School, Varna 2012

Mh.IMP

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 3

History of Accelerators

Gustaf Ising (1883-1960)

Theory and proof-of-principle

- 1924 **Ising** proposes time varying fields across drift tubes. This is a "true" accelerator that can achieve energies above that given by the highest voltage in the system.
- 1928 Wideröe demonstrates Isings principle with an 1 MHz, 25 kV oscillator to make 50 kV potassium ions; the first LINAC was born.

Rolf Wideröe (1902–1996)

Ernest Orlando Lawrence (1901–1958)

Practical devices

- 1928 **Lawrence**, inspired by Wideröe and Ising, conceives the cyclotron; a **coiled LINAC**.
- 1931 **Livingston** demonstrates the cyclotron by accelerating hydrogen ions to 80 keV.
- 1932 **Lawrence**'s cyclotron produces 1.25 MeV protons and he also splits the atom just a few weeks after Cockroft & Walton. Lawrence received the Nobel Prize in 1939.

Stanley Livingston (1905-1986)

Mh. IMP

Courtesy: P.J. Bryant - History and Applications of Accelerators CERN Accelerator School, Varna 2010

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 4

History of Accelerators

The birth of a true accelerator

- 1923 Wideröe, a young Norwegian Ph.D. student draws in his laboratory notebook the design of the **betatron** with the well known 2 to 1 rule. Two years later he adds the condition for radial stability, but he doesn't publish.
- 1927 In Aachen Wideröe constructs a model betatron, but it does not work. Discouraged he changes course and builds the world's first **LINAC**.

All is quiet until 1940, when

- 1940 Kerst re-invents the betatron and builds the first working machine for 2.2 MeV electrons at the University of Illinois
- 1950 Kerst also builds the world's largest betatron (300 MeV)

Donald William Kerst (1911-1993)

nh IMP

nh IMP

The main development

- 1944 E. McMillan & V. Veksler discovers the principle of phase stability and invent the **synchrotron.**
- 1946 F. Goward & D. Barnes make a synchrotron works.
- 1946 First proton linear accelerator of 32 MeV is built at Berkley.
- 1946 First electron linear accelerators are studied at Stanford and MIT.
- 1952 BNL builds 3 GeV Cosmitron.
- 1959 **CERN** builds 28 GeV proton synchrotron.
- 1960 **BNL** builds 33 GeV alternating gradient synchrotron.
- 1960 **DESY** builds 7.4 GeV synchrotron.
- 1962 First single-ring e⁺-e⁻ collider AdA of 2*250 MeV is build at Frascati.
- 1969 GSI builds 140 MeV UNILAC.

. . .

1972 First double-ring proton collider IS`R 2*28 GeV is build at CERN.

Outline

History of Particle Accelerators

- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Acceleration of Particles Some Mathematics

Acceleration of Particles Cyclotron

- DC electric fields beyond 20 MV are very difficult to achieve.
- Above 20 MV, it is easier to use an electric field created by an alternating current (AC).
- In 1932 Lawrence designed a "Cyclotron", a circular device made of two electrodes placed in a magnetic field.

Acceleration of Particles Cyclotron (2)

- 1: Particle is accelerated due to **electric force**. Speed and kinetic energy of the particle increase.
- 2: Particle is accelerated due to **magnetic force**. This acceleration is centripetal acceleration without any change in speed and kinetic energy of the particle.
- 3: Particle is accelerated due to **electric force** in the direction opposite to the direction as in case 1. Speed and kinetic energy of the particle increase by same amount as in the case 1.
- 4: Particle is accelerated due to **magnetic force**. This acceleration is centripetal acceleration without any change in speed and kinetic energy of the particle.
- 5: Particle is accelerated due to **electric force** in the direction opposite to the direction as in case 1. Speed and kinetic energy of the particle increase by same amount as in the case 1 or 3.

We see that the particle follows consecutive larger semicircular path due to increase in the speed at the end of semicircular journey. The resulting path of charged particle, therefore, is a spiral path – not circular.

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 10

Acceleration of Particles Linear Accelerators and Synchrotrons

Mr. IMP

Very simplified schematics (Linear accelerator - LINAC)

Acceleration of Particles Linear Accelerators and Synchrotrons (2)

- Accelerate charged particles
 - Velocity is given by $\beta = v/c$ (0.971 for antiprotons @GSI)
 - Energy is given in eV (World Record by LHC@Cern with 3.5 TeV)
- Electron Gun Acceleration Focusing Bending/Deflecting

Acceleration of Particles Linear Accelerators and Synchrotrons (3)

- Linear accelerators (LINAC)
 - Example: Free Electron Laser in Hamburg (FLASH)
 - Single pass
 - Modular design
 - Availability
 - High current
 - Strong focusing (FEL)
 - Circular accelerators
 - Example: Tevatron at FermiLab
 - Multi-turn Accelerator
 - Energy Ramps Up
 - Multiple Passes through
 - Same RF Cavities
 - High energy (7 TeV at LHC)

Outline

- History of Particle Accelerators
- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Beam Diagnostics for Particle Accelerators

- TECHNISCHE UNIVERSITÄT DARMSTADT
- An accelerator can never be better than the instruments which measure its performance! "- Ulrich Raich, CERN
- Good reasons for beam diagnostics:
 - Component tolerances and related random errors
 - Environmental effects
 - Equipment fault
 - Equipment set-up
 - Performance tuning and preservation

A. Angelovski: ITSS 2012

July 2014 | ETIT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 15

Beam Diagnostics for Particle Accelerators

• What can be measured ?

✓ What is measured?

Beam current

- " position
- " phase
- " arrival-time
- " energy
- " transverse profile
- " transverse emittance
- " longitudinal profile
- " energy profile
- " longitudinal emittance
- " polarization
- " Schottky noise longitudinal
- " Schottky noise transverse

✓ Measurement flavors:

average values i.e. closed orbit

time resolved

i.e. position of individual bunches in a bunch train

correlations

beam position at different locations to detect source of a beam jitter. This requires either real time readout system or time stamping of signals

post mortem

complete dump of signal buffer from last seconds before beam got lost

* CERN Accelerator School 2008, Hans Braun / CERN ACCELERATION IN P

Beam Diagnostics for Particle Accelerators Field contraction

Outline

- History of Particle Accelerators
- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Schottky Diagnostic What can be measured?

longitudinal Schottky

- Momentum spread (longitudinal)
- Tune (transversal)
- (And a lot more...)

а

-a

- In most cases there are two sensors in each plane (horizontal and vertical)
- Sum is independent of position
 - Used for longitudinal diagnose
- Difference is modulated by the synchrotron frequency

Schematic

Pictures by P. Fork and F. Caspers

Schottky Diagnostic Single-particle Current

Mr. IMP

- A single particle is rotating in a storage ring.
- Constant revolution frequency
- Signal induced on a pick-up at passage time t_k .

Schottky Diagnostic Single-particle Current (2)

- Approximation by a Dirac distribution
- Periodic signal over many revolutions

$$i_k(t) = \frac{e}{T} \sum_m \delta(t - t_k - mT)$$

• Applying the Fourier expansion to $i_k(t)$

$$i_k(t) = i_0 + 2i_0 \sum_{n=1}^{\infty} a_n \cdot \cos n\omega_0 t + b_n \cdot \sin n\omega_0 t$$

with $\begin{cases} i_0 = ef_0 \text{ DC part of the beam (single particle)} \\ a_n = \cos n\varphi_k \text{ and } b_n = \sin n\varphi_k \end{cases}$

From: F. Caspers - Schottky signals, CERN Accelerator School, Dourdan, 2008 July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 21

Schottky Diagnostic Time and Frequency Domains

A second particle of revolution frequency $f_1=f_0+\Delta f$ is added.

Schottky Diagnostic Coasting Beam: Frequency Domain

- N particles with a distribution of revolution frequencies $f_0 \pm \Delta f/2$ for n=1.
- One expects a spectrum with bands around each harmonic *nf*₀.
- The band height is arbitrary at this stage.

Schottky Diagnostic Schottky Bands (2)

Overlapping or Mixing

Schottky Diagnostic The Spectrum Analyzer gives ...

_nh_IMP_

the emittance

July 2014 | ETIT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 25

Schottky Diagnostic Example ESR@GSI

A typical display showing a normal FFT result at a fixed moment in time (left) and the evolution of the spectral lines vs. time acceleration ramp going into a flattop in a color coded plot (right).

Schottky Diagnostic Basic Pickup principles (non destructive)

Outline

- History of Particle Accelerators
- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Beam Diagnostics for Particle Accelerators Beam Position Monitors

- Beam position monitors
 - Button and stripline pickups, cavities, etc.
 - Measures the position of the beam inside the beam pipe.

Beam Diagnostics for Particle Accelerators

Mr. IMP

- The beam is capacitive coupled to the pickup.
- Gaussian distribution of the beam charge

The output voltage is proportional to the derivative of the bunch distribution.

- The output signal is a function of :
 - Bunch characteristics (charge, length)
 - Button characteristics (impedance, material...)

Beam Diagnostics for Particle Accelerators

Beam excited eigen-mode

- The lowest transverse-magnetic dipole mode TM_{110} is of interest.
- Almost linear dependence between the E_{z} , the beam displacement and the beam
- High beam displacement sensitivity

Outline

- History of Particle Accelerators
- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Free Electron Lasers

- Accelerated charged particles (electrons) with LINear ACcelerator
- Undulator alternatively polarized magnets

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 33

- The arrival time has to be measured within the same order of precisions or better as the duration of the bunch charge (sub-10 fs).
- Bunch arrival-time jitter at the undulator has three main sources:
 - 1. Arrival-time jitter generated at the beam generation
 - Photo cathode laser
 - Gun
 - 2. Cavity field amplitude fluctuations in the booster module
 - 3. Cavity field phase fluctuations in the booster module

Arrival-time stability between x-ray pulses and pump-probe laser pulses: fraction of pulse duration.

- Electro-optical detection scheme
- External reference laser pulse is amplitude-modulated with the induced voltage signal from the pickup in the Electro-Optical Modulator (EOM).
- The arrival-time of the electron bunch is encoded onto the laser pulse amplitude.
- The laser pulse is detected with a photo-detector.

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 35

- Future operation with low charged bunches (20m pC and less)
- The lower the charge the less the induced voltage in the pickup.
- The time resolution of the BAM depends on the voltage slope at the zero crossing

- Higher slope at the zero-crossing increases the sensitivity of the BAM
 - Bigger amplitude difference at the receiver

A. Angelovski: ITSS 2012

.nh. IMP

- Measurement resolution = f (pickup signal slope at the first zero-crossing)
- Signal slope = f (bunch charge)

Mr. IMP

- Limiting factors of the BAMs bandwidth
 - Pickups, Cables, RF components, etc.
- Pickup design for the new BAM
 - Cone-shaped pickup

- Avoid resonances in the pickup structure
 Gaps, discontinuities, sharp edges
- Match the pickup to impedance of 50 Ω
 - No reflections in the output signal
 - Smooth impedance transition from the beam pipe to the connector

A. Angelovski: ITSS 2012

- No button design
 - Pickup resonances
- Fast voltage response
 - Reduced capacitance (smaller time constant)
- Tapered cut-out with constant ratio b / a = 2.3 for 50 Ω matching
 - Coax structure, resonance-free (no higher order modes) up to 40 GHz

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 39

<u>_____</u>

Fabrication at Orient Microwave

July 2014 | ETIT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 40

A. Angelovski: ITSS 2012

M.K. Bock, FLASH seminar – 28 June 2011

Outline

- History of Particle Accelerators
- Particle Accelerator Techniques
- Beam Diagnostics for Particle Accelerators
 - Schottky Measurement
 - Beam Position Measurement
 - Arrival-time Measurement
 - Bunch shape diagnostics

Bunch length Diagnostics using Coherent Radiation

- Radiation emitted by relativistic particle beams contains information about the longitudinal and transverse bunch distribution.
- At wavelength (much) shorter than the bunch length the radiation is emitted incoherently because each electron emits its radiation independently from the others without a defined phase relation.

Incoherent radiation

coherent radiation

bunch length radiation wavelength

- Coherent enhancement occurs at wavelength, which are equal or shorter than the bunch length, where fixed phase relations are existing, resulting in the temporal coherence of the radiation.
- While the power of the incoherent radiation scales with the number N of particles in a bunch, the coherent radiation increases with square of the number of particles N².

V. Schlott: CAS 2008, Lecture on Femto-Second Diagnostics

TECHNISCHE UNIVERSITÄT

DARMSTADT

Coherent Synchrotron Radiation

Mr. IMP

- P_n=n₀*P1(1+N_e g_λ)
- g_λ is a form factor and defines the spectral characteristics
- Typically N_e=10⁹

Enormous increase in power in comparison to incoherent emission

- Intensity \propto I^2_{bunch}
- Very short bunch is needed

mm-Wave & THz Detectors NEP vs. Video Bandwidth

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 45

Coherent Radiation – Detector Systems in the THz Regime

He- and N-cooled bolometers (InSb, Si, GeGa, Nb...)

Spectral response: ~5 mm to 50 μ m Optical NEP: ~1,5*10⁻¹² W Hz^{0,5} Dynamic Range: pW to μ W Opt. Responsivity: 15 kW / Watt Detector BW: ~ 1 MHz Operating Temp.: <4,2 °K **Golay Cell Detectors**

Spectral response: ~ 5 mm to visible Optical NEP: ~ $1*10^{-10}$ W Hz^{0,5} Dynamic Range: pW to μ W Opt. Responsibility: 100 kV / Watt Detector BW: ~ 15 Hz Operating Temp.: 300 °K

V. Judin: Longitudinal diagnostics at ANKA 2010

THz Detectors Bolometer

- Bolometer is a thermal detector
- dR/dT detection
- Fundamental determinants
 - Response time τ=C/G
 - Responsivity S \propto 1/G
- Detector matter:
 - e.g. Superconductor

V. Judin: Longitudinal diagnostics at ANKA 2010

Hot Electron Bolometer

V. Judin: Longitudinal diagnostics at ANKA 2010 July 2014 | ETiT | Institute for Microwave Engineering and Photonics

- The HEB detector system
- SC niobium nitride detector
- Spectral range 150 GHz 3 THz
- Response time < 160 ps</p>

Ultra-fast YBCO THz detectors for picosecond synchrotron pulses

July 2014 | ETiT | Institute for Microwave Engineering and Photonics | Andreas Penirschke | 49

Quasi Optical Detector

Square-law detectors based on Zero-Bias Schottky Diodes

Application fields

- Scientific instrumentation
- Spectroscopy
- Imaging
- High bit rate telecommunication
- Monitoring of short-pulse and weak THz radiation

RF-Bandwidth, GHz	50 - 200	50 - 500	50 – 2000
Typ. responsivity,	700	80000@100GHz	40000@100GHz
V/W	w/o ampl.	5000@500GHz	3000@1THz
Typical NEP,		4@100GHz	6@100GHz
pW/Hz ^{1/2}		110@500GHz	100@1THz

Quasi Optical Detector Zero Bias Detector vs. Golay Cell

Comparison: ZBD vs. GC

SNR ratio measured in a photoconductive setup

